

High Productivity Computing Systems

Goals:

➤ Provide a new generation of economically viable high productivity computing systems for the national security and industrial user community (2007 – 2010)

Impact:

- Performance (efficiency): critical national security applications by a factor of 10X to 40X
- Productivity (time-to-solution)
- Portability (transparency): insulate research and operational application software from system
- Robustness (reliability): apply all known techniques to protect against outside attacks, hardware faults, & programming errors

HPCS Program Focus Areas

Applications:

 Intelligence/surveillance, reconnaissance, cryptanalysis, weapons analysis, airborne contaminant modeling and biotechnology

Fill the Critical Technology and Capability Gap
Today (late 80's HPC technology).....to.....Future (Quantum/Bio Computing)

HPCS Objectives

Moores Law
Double Raw
Performance every
18 Months

New Goal:
Double Value Every
18 Months

Fill the high-end computing technology and capability gap for critical national security missions

Computing Metric Evolution

Early
Computing
Metrics

Current
Computing
Metrics

- HPCS "Value" Based Metrics
- System performance relative-toapplication diversity
- Robustness (includes security)
- ◆ Clock frequency ◆ Clock frequency
- Raw performance (flops)
- Point performance
- AcquisitionPrice

- Mean time-to-recovery
- ◆ Idea-to-solution
- ♦ Time-to-solution
- Application life cycle costs
- Ownership (facilities, support staff, training) costs
- Acquisition (facilities and equipment) costs
- Scalability (flops-to-petaflops)
- Evolvability

GHz Race

Emerging
Scalable
Benchmarks

HPCS Technical Considerations

Communication **Programming Models**

Shared-Memory Multi-Processing

Distributed-Memory Multi-Computing "MPI"

Architecture Types

HPCS Focus Tailorable Balanced Solutions

Single Point Design Solutions are no longer **Acceptable**

HPCS Program Phases 1-3

Phase I Output

- ◆ Develop HPCS conceptual pilot system technical description targeted for implementation by 2008 to 2010 in accordance with Tasks 1-6.
 - Define revolutionary system in terms relative to current product line
 - Quantify HPCS performance, productivity, portability, and robustness objectives
 - Quantify HPCS technical objectives: (1) High effective bandwidth/low latency; (2) Balanced system architecture; (3) Robustness; (4)
 Performance measurement/prediction; (5) System tailorability

Technology Components

- 1) System Architecture
- 2) Programming Models
- 3) Software Technology
- 4) Hardware Technology

Application Analysis and Performance Assessment

- 5) Performance Characterization & Prediction
- 6) HPCS Application Productivity Analysis

Phase I Output (cont'd)

- Quantify "Value" for proposed solution across HPCS application regions with suggested measurement techniques.
- ◆ Define In context "Value" metrics for both HPCS applications and vendor markets.
- Provide supporting simulations, analysis, experiments, and demonstrations as required.
- ◆ Address Phase 2&3 technical, programmatic, and market risks.
 - Phase 2&3 program plan with a recommended technology freeze point.
 - Identify critical technologies to be addressed in Phase 2.
 - Provide university and end user early technology coordination and transition plan.

Phase I HPCS Industry Teams

Cray, Incorporated

International Business
 Machines Corporation(IBM)

• Silicon Graphics, Inc. (SGI)

Sun Microsystems, Inc.

Hewlett-Packard Company

